Features

- Full duplex operation
- Two complete circuits per package
- Transformerless 2-4 Wire (4-2 Wire) conversion
- $\pm 5 \mathrm{~V}$ operation
- Wide bandwidth (50kHz)
- Small Package Size

Applications

4-2 Wire and 2-4 Wire conversion for:

- MH88630/631, MH88632, MH88500 \& MT8840
- PBX
- Key Telephone System
- Channel bank
- Voice Mail
- Terminal Equipment
- Digital Loop Carrier
- Modem
- Intercom

ISSUE 4
April 1995

Ordering Information

MH88524 10 Pin SIL Package
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Description

The Zarlink MH88524 (Dual 2-4 wire Circuit) provides two independent interfaces between4-Wire devices such as the MH88631 COIC (Central Office Interface Clrcuit) and a speech switch such as the MT8814 (Analog Switch Array), requiring only a single bidirectional switch per crosspoint. The MH88524 can accommodate two full duplex audio links. The device is fabricated as a thick film hybrid which incorporates various technologies for optimum circuit design and very high reliability.

Flgure 1 - Functional Block Diagram

Figure 2 - Pin Connections

Pin Description

Pin \#	Name	Description
1	RX1	Receive 1 (Input). 4-Wire ground (AGND) referenced audio output.
2	JUN1	Junctor 1 (Transmit and Receive). Ground referenced transmit and receive speech path.
3	TX1	Transmit 1. 4-Wire ground (AGND) referenced audio output.
4	VDD	Positive Supply Voltage. Typically +5V.
5	AGND	Analog Ground. 2-Wire and 4-Wire ground. Normally connected to System Ground.
6	VEE	Negative Supply Voltage. Typically -5V.
7	IC	Internal Connection. This pin is internally connected.
8	TX2	Transmit 2 (Output). 4-Wire ground AGND) referenced audio output.
9	JUN2	Junctor 2 (Transmit and Receive). Ground referenced transmit and receive speech path.
10	RX2	Receive 2 (Input). 4-Wire ground (AGND) referenced audio output.

Absolute Maximum Ratings*

	Parameter	Sym	Min	Max	Units	Comments
$\mathbf{1}$	DC Supply Voltage	V_{DD}	-0.3	15	V	With respect LGND
		V_{EE}	+0.3	-15	V	
$\mathbf{2}$	Storage Temperature	T_{S}	-55	125	${ }^{\circ} \mathrm{C}$	

* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions

	Parameter	Sym	Typ *	Min	Max	Units	Comments
$\mathbf{1}$	DC Supply Voltage	V_{DD}	5.0	4.75	10	V	
		$\mathrm{~V}_{\mathrm{EE}}$	-5.0	-4.75	-10	V	
$\mathbf{2}$	Operating Temperature	T_{OP}		0	70	${ }^{\circ} \mathrm{C}$	

[^0]DC Electrical Characteristics ${ }^{\ddagger}$

	Characteristics	Sym	Min	Typ *	Max	Units	Test Conditions
1	Supply Current	I_{DD}			4	mA	$\mathrm{~V}_{\mathrm{DD}}=+5.0$
		P_{EE}			4		$\mathrm{~V}_{\mathrm{EE}}=5.0$
2	Power Dissipation	PC			40	mW	$\mathrm{~V}_{\mathrm{DD}}=+5.0$
							$\mathrm{~V}_{\mathrm{EE}}=5.0$

\ddagger DC Electrical Characteristics are over recommended operating conditions unless otherwise stated.

* Typical figures are at $25^{\circ} \mathrm{C}$ with nominal $\pm 5 \mathrm{~V}$ supplies and are for design aid only.

AC Electrical Interdependence Characteristics ${ }^{\ddagger}$

	Characteristics	Sym	Min	Typ*	Max	Units	Test Conditions
1	Cross, Circuit 1 or 2 JUN1 to JUN2 JUN1 to TX2 RX1 to JUN2 RX1 to TX2		$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$			dB dB dB dB	Input 1.0V $200 \mathrm{~Hz}-3400 \mathrm{~Hz}$
	JUN1 to JUN2 JUN1 to TX2 RX1 to JUN2 RX1 to TX2		$\begin{aligned} & \hline 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$200 \mathrm{~Hz}-50 \mathrm{kHz}$
2	Crosstalk, Circuit 1 or 2 JUN1 to JUN2 JUN1 to TX2 RX1 to JUN2 RX1 to TX2		$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$			dB dB dB dB	Input 1.0V $200 \mathrm{~Hz}-3400 \mathrm{~Hz}$
	JUN1 to JUN2 JUN1 to TX2 RX1 to JUN2 RX1 to TX2		$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$			dB dB dB dB	$200 \mathrm{~Hz}-50 \mathrm{kHz}$

\ddagger AC Electrical Characteristics are over recommended operating conditions unless otherwise stated.
Typical figures are at $25^{\circ} \mathrm{C}$ with nominal $\pm 5 \mathrm{~V}$ supplies and are for design aid only.

AC Electrical Characteristics ${ }^{\ddagger}$

	Characteristics	Sym	Min	Typ*	Max	Units	Test Conditions
1	Return Loss at junctor(1) (Ref. $=604 \Omega$)		$\begin{aligned} & 46 \\ & 40 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \hline 200-3400 \mathrm{~Hz} \\ & 200-50 \mathrm{kHz} \end{aligned}$
2	Impedance at Junctor			604		Ω	
3	Transhybrid Loss(2) (Junctor - 754 ${ }^{\text {) }}$		$\begin{aligned} & 42 \\ & 36 \end{aligned}$			$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 200-3400 \mathrm{~Hz} \\ & 200-50 \mathrm{kHz} \end{aligned}$
4	Transhybrid Loss (3) (Frequency $=1 \mathrm{kHz}$)		$\begin{aligned} & 18 \\ & 21 \end{aligned}$			$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { Junctor }=600 \Omega \\ & \text { Junctor }=900 \Omega \end{aligned}$
5	Transhybrid Loss (Frequency $=50 \mathrm{kHz}$)		$\begin{aligned} & 15 \\ & 18 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \hline \text { Junctor }=600 \Omega \\ & \text { Junctor }=900 \Omega \end{aligned}$
6	Input Impedance at RX		10k			Ω	
7	Output Impedance at TX				5	Ω	
8	Gain RX to Junctor	ARJ	$\begin{aligned} & \hline 0.99 \\ & -0.1 \end{aligned}$	$\begin{gathered} 1.00 \\ 0.0 \end{gathered}$	$\begin{gathered} 1.01 \\ 0.1 \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{dBV} \end{aligned}$	Input 0.5V 1kHz
9	Frequency Response Gain (relative to gain at 1 kHz)		$\begin{aligned} & \hline-0.1 \\ & -0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 200-3400 \mathrm{~Hz} \\ & 200-50 \mathrm{kHz} \end{aligned}$
10	Gain junctor to TX	AJT	$\begin{aligned} & \hline 0.99 \\ & -0.1 \end{aligned}$	$\begin{gathered} 1.00 \\ 0 \end{gathered}$	$\begin{gathered} 1.01 \\ 0.1 \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{dBV} \end{aligned}$	Input 0.5V 1kHz
11	Frequency Response Gain relative to gain at 1 kHz		$\begin{aligned} & \hline-0.1 \\ & -0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & 200-3400 \mathrm{~Hz} \\ & 200 \mathrm{~Hz}-50 \mathrm{kHz} \end{aligned}$
12	Signal Output Overload Level at TX at Junctor		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			dBm dBm	\%THD<5\% Reference: 600Ω Reference: 754Ω
13	Total Harmonic Distortion RX to Junctor Junctor to TX RX to Junctor Junctor to TX	THD			$\begin{aligned} & 0.4 \\ & 0.4 \\ & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & \text { Input } 0.5 \mathrm{~V} 1 \mathrm{kHz} \\ & 200-3400 \mathrm{~Hz} \\ & 200-3400 \mathrm{~Hz} \\ & 200-50 \mathrm{kHz} \\ & 200-50 \mathrm{kHz} \\ & \hline \end{aligned}$
14	Idle Channel Noise	Nc			$\begin{aligned} & 2 \\ & 2 \end{aligned}$	dBrnC dBrnC	Reference: 600Ω Reference 754Ω
15	Power Supply Rejection Ratio at TX and Junctor $\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \hline \end{aligned}$	PSRR	$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Ripple 0.1V 1kHz

* Typical figure are at $25^{\circ} \mathrm{C}$ with nominal $\pm 5 \mathrm{~V}$ supplies and are for design aid only.
\ddagger AC Electrical Characteristics are over recommended operating conditions unless otherwise stated.
Both of the 2-4 Wire circuits are tested. TX, RX and Junctor actually refer to TX1, RX1 and JUN1; and TX2, RX2 and JUN2.
All of the above test conditions use 754Ω connected between Junctor and AGND, unless otherwise stated.
All the above test conditions use 200 Hz to 3400 Hz unless otherwise stated.
Notes:
(1) RX is connected to AGND, see Figure 3.
(2) See Figure 5.
(3) See Figure 4.

Functional Description

The MH88524 is a Dual 2-4 Wire Circuit used to interface between ground reference 2 -Wire circuitry and ground referenced 4 -Wire circuitry. The device can accommodate two full duplex audio links.

Hybrid

The 2-4 Wire hybrid circuit separates the ground reference full duplex signal at JUNi (where $\mathrm{i}=1$ or 2) of the switched line into receive and transmit ground referenced signals the RXi (Receive) and TXi (Transmit). The hybrid also prevents the input signal at RXi from appearing at TXi. The degree to which the hybrid minimises the contribution to the RXi signal at the TXi output is specified as transhybrid loss. For maximising transhybrid loss, see the Transhybrid Loss section.

The 4-Wire side can be interfaces to a COIC such as the MH88631 for use in analog voice switched systems; or a filter/codec, such as the Zarlink MT896X, for use in digital voice switched systems.

The 2 -wire side can be interfaces to a crosspoint switch such as the MT8816 or a junctor SLIC such as the MH88510 for use in analog voice switched systems.

Return Loss at Junctor

The MH88524's Junctor impedance (Zin) is fixed at 604Ω nominal when RXi and TXi in a feedback loop as shown in Figure 6, the JUNi impedance will change, see Return Loss with Interface Circuit.

Return Loss with Interface Circuit

To maximise return loss at Tip-Ring of the Interface Circuit, the termination impedance at Tip-Ring of the Interface Circuit (COIC or SLIC) should match the Interface Circuit's input impedance ($600 \Omega, 900 \Omega$ or complex). However, with the inclusion of the MH88524, the interface circuit's input impedance is dependent on the JUNi termination resistance. For optimum return loss the JUNi should be terminated with 754Ω.

Figure 6, shows, illustrates a typical connection between an Interface Circuit (MH88631) and the MH88524. Note how the return loss occurs when JUNi is terminated with 754Ω.

Figure 8 illustrates a typical connection between two interface circuits (MH88631), through an MH88524 and two crosspoint switches. Optimum return loss occurs when JUNi is terminated with 754Ω. Since the JUNi input/output impedance is 604Ω, the MH88510 JUNC input/output impedance is 604Ω, and the crosspoint switches resistance are $75 \mathrm{~W}+75 \Omega$, this configuration gives optimum return loss.

Transhybrid Loss

$T H L=\log (V R X / V T X)$
Transhybrid loss is maximised when the JUNi termination impedance is 754 W . In addition, good transhybrid loss is indicated in Figure 4 and AC Electrical Characteristics.

Fixed Transmit and Receive Gain

Transmit Gain (JUNi to TXi, TXi/JUNi) and receive Gain (RXi to JUNi, JUNi/RXi) are both fixed at OdBV providing the MH88524 JUNi impedance is 754Ω.

Application with MT8840, MH88500 and MH88524

Figure 11 illustrates an application for the MH88524's wide bandwidth. The MT8840 requires a 2-4 Wire converter which has good transhybrid loss at 32 kHz . Since the MH88524 operates to 50 kHz , it is ideal for this application. In addition, if a SLIC (Subscriber Line Interface Circuit) is required, the MH88500 can also be used since it also has a 604Ω Junctor and a wide bandwidth.

Mechanical Data See Figure 12.

Figure 3 - Return Loss at Junctor vs Frequency with MH88524

Figure 4 - Transhybrid Loss vs Junctor Resistance with MH88524

Figure 5 - Transhybrid Loss vs Frequency with MH88524

Figure 6 - Return Loss vs Junctor Resistance with MH88631 and MH88524

Figure 7 - MH88524 Application Circuit

Figure 8 - Application Circuit with MH88631, Crosspoint Switch and MH88524

Figure 9 - Application Circuit with MH88631, MH88510, Crosspoint Switch and MH88524

Figure 10-Application Circuit for Crosstalk Test

Figure 11 - Application Circuit with MT8840, MH88500 and MH88524

Side View

Figure 12 - Mechanical Data

http://www.zarlink.com

World Headquarters - Canada

Tel: +1 (613) 5920200
Fax: +1 (613) 5921010

North America - West Coast

Tel: (858) 675-3400
Fax: (858) 675-3450

North America - East Coast
Tel: (978) 322-4800
Fax: (978) 322-4888

Asia/Pacific
 Tel: +65 3336193
 Fax: +65 3336192

Europe, Middle East, and Africa (EMEA)

Tel: +44 (0) 1793518528
Fax: +44 (0) 1793518581

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink Semiconductor s conditions of sale which are available on request.

[^1]
[^0]: * Typical figures are at $25^{\circ} \mathrm{C}$ with nominal $\pm 5 \mathrm{~V}$ supplies and are for design aid only.

[^1]: Purchase of Zarlink's $I^{2} C$ components conveys a licence under the Philips $I^{2} C$ Patent rights to use these components in an $I^{2} C$ System, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips

 Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
 Copyright 2001, Zarlink Semiconductor Inc. All rights reserved.

